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bstract

Due to importance of the quantity of water loss in the life cycle of lead-acid batteries, water consumption tests were performed on 72 lead-acid
atteries with low antimony grid alloy at different charge voltages and temperatures. Weight loss of batteries was measured during a period of 10
ays. The behavior of batteries in different charge voltages and temperatures were modeled by artificial neural networks (ANNs) using MATLAB
media. Four temperatures were used in the training set, out of which three were used in prediction set and one in validation set. The network was

rained by training and prediction data sets, and then was used for predicting water consumption in all three temperatures of prediction set. Finally,
he network obtained was verified while being used in predicting water loss in defined temperatures of validation set. To achieve a better evaluation
f the model ability, three models with different validation temperatures were used (model 1 = 50 ◦C, model 2 = 60 ◦C and model 3 = 70 ◦C). There

as a good agreement between predicted and experimental results at prediction and validation sets for all the models.
Mean prediction errors in modeling charge voltage–temperature–time behavior in the water consumption quantity for models 1–3 were below

.99%, 0.03%, and 0.76%, respectively. The model can be simply used by inexpert operators working in lead-acid battery industry.
2007 Elsevier B.V. All rights reserved.
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. Introduction

The two most common types of batteries widely used today
re the sealed or maintenance-free lead–calcium battery and the
ow maintenance lead–antimony battery. The calcium or sealed
attery uses less water and does not corrode nearly as much
s the lead–antimony battery does. The lead–antimony battery
which mostly includes deep cycle batteries and batteries that
ave removable caps for adding water to battery cells) with-
tands continuous charge/discharge cycles and generally accepts
harges more readily than a calcium battery. External corrosion

roblems associated with the sulfuric acid fumes being carried
ut of the battery by an extensive gas evolution due to electrolysis
uring charging [1].
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To achieve long battery life, the lead–antimony battery
equires frequent water additions to maintain proper electrolyte
evels and the corrosion must be regularly removed from posts,
ables, hold downs and battery trays.

Calcium is a mineral and antimony is a metal. The more
ntimony in the battery, the deeper discharge. However, the more
ntimony in a battery, the more gassing, corrosion and water
onsumption will be.

Some of the main reasons why batteries do not get full life
ycles are corrosion, sulfation and water consumption [2–8].
he water level should never go beyond top border of plates and
ecause of the presence of ingredients such as iron, chlorine etc.
vailable in tap water always distilled water should be added
nd not tap water. If one battery is rated at a100 min reserve
apacity and the plates in battery are 10 in. tall and water level
ets 1 in. below the plate, this part of the plate will now dry out

nd becomes hard and at least 10% of batteries capacity just is
ost while if water level gets 2 in. below the plate, at least 20%
s lost. As a battery ages or gets older, it will lose some parts
ssociated with charge acceptance and so it will use more water
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nd thus it should be checked more frequently. Reduced charge
cceptance is attributed to some different phenomena such as
ulfation, passivation and other processes can also make some
art of negative or positive paste inactive, so that at constant
mount of charge coulombs, in old battery, more amount of elec-
ricity should be used for the electrolysis of water to realize the
as. But, at test time, there is not considerable change at amount
f charge acceptance so; we do not attach a lot of importance to
t in this model.

Because of the importance of water consumption especially in
he antimony–lead-acid batteries and the necessity for its peri-
dic determination and also long time spent on doing current
vailable tests, we decided to use a model for calculating the
mount of water loss in these batteries.

Being based on artificial neural network, this model can easily
elp the laboratory operator to control the water consumption at
ny time.

The basic units of neural networks, the artificial neurons,
imulate the four basic functions of natural neurons. Various
nputs to the network are represented by the mathematical sym-
ol, x(n). Each of these inputs is multiplied by a connection
eight. These weights are represented by w(n). In the simplest

ase, these products are simply summed, fed through a transfer
unction to generate a result, and then output. This process lends
tself to physical implementation on a large scale and in a small
ackage. This electronic implementation is still possible with
ther network structures which utilize different summing func-
ions as well as different transfer functions. In currently available
oftware packages these artificial neurons are called “process-
ng elements” and have many more capabilities than the simple
rtificial neuron described above. Inputs enter into the process-
ng element from the upper left. The first step is for each of
hese inputs to be multiplied by their respective weighting fac-
or (w(n)). Then these modified inputs are fed into the summing
unction, which usually just sums these products. The output of
he summing function is then sent into a transfer function. This
unction then turns this number into a real output via some algo-
ithm. It is an algorithm that takes the input and turns it into a
umber like as 0, 1, −1 or some other. The transfer functions that
re commonly supported are sigmoid, sine, hyperbolic tangent,
tc. This transfer function can also scale the output or control its
alue via thresholds. The result of the transfer function is usually
he direct output of the processing element. Finally, the process-
ng element is ready to output the result of its transfer function.
his output is then input into other processing elements, or to an
utside connection, as dictated by the structure of the network.

Basically, all artificial neural networks have a similar struc-
ure or topology as shown in Fig. 1. In this structure, some of the
eurons interface to the real world to receive its inputs. Other
eurons provide the real world with the network’s outputs. This
utput might be the particular character that the network thinks
t has scanned or the particular image it thinks is being viewed.
ll the rest of the neurons are hidden from view [9].

There are many reports describing various attempts for uti-

izing various computational approaches to estimate the state
f charge (SOC), cold cranking ability (CCA) and impedance
odeling of intermediate size lead-acid batteries [10–19]. In

(
t

Fig. 1. A simple neural network diagram.

ead-acid batteries, water consumption is the most important
rocess. Some processes including charge, overcharge and evap-
ration can reduce water content of the battery. It should be
entioned that water loss is one of the major processes which

ause battery failure [4]. Therefore, simulation and modeling
f water consumption in lead-acid batteries will be important
nd very interesting. However, to the best of our knowledge, no
ttempts has been made to model water consumption in lead-acid
atteries.

In this paper, the water consumption computation model
ased on artificial neural network (ANN) for lead-acid batteries
s introduced for the first time. The result of experiments proved
urther improvement of accuracy with the proposed model.
omputation values are in good agreement with experimental
ata.

. Experimental

.1. Reagents and materials

All materials and reagents used in these experiments were
ndustrial grade and all of them were obtained from Iranian
ompanies. All lead-acid batteries 50 Ah used in the study
ere produced by Sepahan Battery Industrial Complex (Isfahan,

ran).

.2. Instrumental

Provision of low temperature (0 ◦C) was carried out by
ndustrial freezer (ARMDFB, Iran). Charging of batteries was
erformed by charge/discharge instrument (Moran, Italy). For
etermination of batteries weight, a balance with accuracy of
.1 g was used (AND, Japan). A water bath (Pars Horm Co.,
ran) was used for providing constant temperatures.

.3. Methods
Six positive plates with the dimension of 107 mm × 143 mm
or total surface of 1836.12 cm2 for two side surface of six posi-
ive plates) and five negative plates with the same dimension (or
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Table 1
Water loss (g) experimental used data for modeling of water consumption in lead-acid batteriesa

Temperature Voltage

13 13.25 13.5 13.75 14 14.25 14. 5 14.75 15

0 16.8 17.8 20 23 26.7 30.4 32.5 35.6 37.8
30 35.3 40.6 48.9 55.2 59.2 61.6 69.3 75.4 89.5
40 66.6 71.8 77 85.2 90.3 95.3 100.2 105.7 111.4
50 82 92.2 103.6 109.5 113.7 118.3 123.4 128.8 134.3
60 102.1 111.6 122.4 129.6 135.2 140.1 146.3 151.9 155.7
70 129.1 135.3 145 152.1 158.3 165.6 170.8 176.1 182.1
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The final model was used in MATLAB 7 media for making a
file to be used by inexpert operators working in lead-acid battery
industry.

Table 2
Selected temperatures (◦C) for three networks as the three dataseta

Validation dataset Prediction dataset Training dataset Parameter

50 0, 60, 80 30, 40, 70, 90 Network 1
0 147.6 152.5 160.2 169.2
0 169 179.8 190.5 198.2

a Final weights of batteries were measured after 140 h.

otal surface of 1530.1 cm2 for two side surface of five negative
lates) were grouped to make a single block of 50 Ah and 12 V
attery. The grids of all positive and negative plates were made
rom low antimony–lead alloy (1.7% Sb).

All low antimony–lead-acid batteries used in this study were
he same in terms of open circuit voltage (OCV), weight, power
nd battery available capacity (BAC). Seventy-two batteries
ere introduced to eight different temperatures and nine differ-

nt charge voltages were used for charging them. The lead-acid
attery with nominal voltage of 12 V is used for exemplification,
hose available capacity is 50 Ah at the 20 h discharge rate and

emperature of 40 ◦C. For charging each battery one constant
oltage was performed. Batteries were put in water baths with
ifferent temperatures. Hence at the end of the test program,
ll batteries has experienced nine different charge voltages and
ight different temperatures. The experimental data has been
hown in Table 1. It should be mentioned that only the final
eights are shown in this table while the whole set of data is
collection of weights from every 5 h weight measurements of
atteries. Based on the aforementioned conditions, the follow-
ng test plans were performed during a period of 3 months and
nally a complete set of data was collected. The procedure had

he following steps:

. Selection of 72 lead-acid batteries with the same open circuit
voltage (OCV), weight, power and battery available capacity
(BAC).

. Charging the batteries using the same charge algorithm until
they were fully charged.

. Placing batteries in the freezer and different water baths to
have constant different temperatures namely 0, 30, 40, 50,
60, 70, 80 and 90 ◦C (each battery was used only for one
temperature).

. At each temperature, charging the fully charged battery for
10 days at different constant voltages namely 13, 13.25, 13.5,
13.75, 14, 14.25, 14.5, 14.75 and 15 V (each battery was used
only for one charge voltage).

. The interval time for measuring the battery weight was 5 h
and before each measurement, batteries were completely

dried.

. The obtained data during charge time were classified into
three groups, and each group of data was separately modeled
(Table 2).

6
7

1

176 183.4 189.9 197.2 206.4
206.6 211.5 218.4 226.6 234.6

ach network was established by four temperatures in train-
ng set and three temperatures in prediction set. The obtained

odels were used for prediction of the amount of water loss
n prediction set and finally, they were validated by validation
et. For increasing the accuracy and precision of the model,
hree networks were separately used for three selected dataset
Table 2). All steps of modeling were carried out in MATLAB 7
edia.
It should be noted that in all linear and feed forward net-

orks, log (weight) was used for modeling and this offered
inimum error in the training and prediction dataset but a

arge error was obtained in the validation dataset. However,
hen the Elman (backward) network was tried with real

arget without any change, the amount of errors in all train-
ng, prediction and validation datasets were in the acceptable
ange.

To train the ANN model using the sigmoid transfer function,
learning process was carried out by adapting the connection
eights in response to a number of training points of charge
oltages and temperatures.

To optimize learning rate and momentum, the initial training
f network was carried out by all data including training and
rediction sets. Training of network was controlled by predic-
ion error. After initial training, the model was trained without
rediction set with the same learning rate and momentum for
ptimizing the weights and iterations. After this training, the
btained model was used for prediction of data in prediction set.
his test is called internal validation. In the final step, the model
as employed for prediction of data in validation set while this

est is called as external validation.
0 40, 70, 90 0, 30, 50, 80 Network 2
0 30, 60, 80 0, 40, 50, 90 Network 3

a At each temperature, nine different voltages were used for charge (13, 13.25,
3.5, 13.75, 14, 14.25, 14.5, 14.75 and 15.0 V).
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Fig. 2. Experimental data that monitors the relationship between temperature
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Table 4
Descriptions of the training functions

Training functions

trainb Batch training with weight and bias learning rules
trainbfg BFGS quasi-Newton back propagation
trainbr Bayesian regularization
trainc Cyclical order incremental update
traincgb Powell–Beale conjugate gradient backpropagation
traincgf Fletcher–Powell conjugate gradient, backpropagation
traincgp Polak–Ribiere conjugate gradient backpropagation
traingd Gradient descent backpropagation
traingda Gradient descent with adaptive lr backpropagation
traingdm Gradient descent with momentum backpropagation
traingdx Gradient descent with momentum & adaptive lr backprop
trainlin Levenberg–Marquardt backpropagation
trainoss One step secant backpropagation
trainr Random order incremental update
trainrp Resilient backpropagation (Rprop)
t
t

e
t
f
o
b
i

p
t
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nd voltage with quantity of water loss in the lead-acid batteries, (a) quantity of
ater loss in the constant voltages at the different temperatures (b) quantity of
ater loss in the constant temperatures at the different voltages.

. Results and discussion
Water in a flooded lead-acid battery is lost as a result of evap-
ration and electrolysis into hydrogen and oxygen escaping into
he atmosphere. One Faraday of overcharge will result in an

able 3
SE status in the different training functions and in the different networks

Network
type

Training
function

Training parameters MSE

Linear LM 30 neurons and 30,000 epochs 1.0 × 10−3

Feed
forward

CGB 30 neurons and 1899 epochs 7.0 × 10−4

BFG 30 neurons and 3000 epochs 3.0 × 10−4

CGP 30 neurons and 758 epochs 1.0 × 10−3

CGF 30 neurons and 1360 epochs 9.0 × 10−4

GD 30 neurons and 3000 epochs 1.5 × 10−2

GDA 30 neurons and 3000 epochs 4.7 × 10−3

GDM 30 neurons and 3000 epochs 1.2 × 10−2

LM 3 neurons and 1451 epochs 1.5 × 10−3

LM 10 neurons and 2051 epochs 9.0 × 10−4

LM 30 neurons and 3000 epochs 2.6 × 10−4

LM 60 neurons and 3000 epochs 1.2 × 10−4

LM 60 neurons and 6000 epochs 1.0 × 10−4

OSS 30 neurons and 3000 epochs 9.9 × 10−4

SCG 30 neurons and 3000 epochs 7.0 × 10−4

Backward
(Elman)

GDM 10 neurons and 30,000 epochs 7.0 × 10−4

LM 10 neurons and 10,000 epochs 1.0 × 10−4

GDX 30 neurons and 10,000 epochs 9.0 × 10−4

GDX 10 neurons and 10,000 epochs 4.0 × 10−4
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rains Sequential order incremental update
rainscg Scaled conjugate gradient backpropagation

lectrolysis loss of about 18 g of water. Evaporation is a rela-
ively small part of the loss except in very hot, dry climates. In a
ully charged battery, electrolysis causes the water loss at a rate
f 0.336 cm3 Ah−1 overcharge. For example if a 500 Ah 12 V
attery is overcharged about 10%, it can thus lose 16.8 cm3 of
ts water during the test.

It is important that the electrolyte in a battery be maintained at
roper level. The electrolyte not only serves as an ionic conduc-
or, but also as a major factor in the transfer of heat from plates.
f the electrolyte is below the plate level, then a part of the plate
s not electrochemically efficient and this fact causes a concen-
ration of heat in other parts of the battery. Periodic checking of
ater consumption can also serves as a rough check on charg-

ng efficiency and as a warning for the time when adjustment
f the charger is required. Since replacing water can be seen as
major maintenance cost, water loss can be reduced by con-

rolling the amount of overcharge and by using hydrogen and
xygen recombining devices in each cell where possible. Addi-
ion of water is best accomplished after recharge and before an
qualization charge. Water is added at the end of the charge cycle

o reach the high level line.

Realizing of gas during charge and overcharge will uniformly
ix the water with the acid. In freezing weather, water should

able 5
rchitecture and specification of the generated ANNs

etwork 1,2,3

o. of input layers 3
o. of hidden layers 2
o. of neurons in the hidden layers 10
o. of output layers 1
earning rate 0.1
omentum 0.1
umber of epochs 10,000
ransfer function Tangent sigmoid

etworks 1, 2 and 3 were used for water consumption behavior at different
onstant charge voltages and temperatures.
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ot be added without mixing as it may freeze before gassing pro-
ess occurs. Therefore, the added water should be mechanically
ixed with residual electrolyte in the battery, e.g. by shaking

f the battery. Although demineralized water may be acceptable
or some batteries, the low cost of distilled water makes it the
est choice.

Overfilling must be avoided as the resultant overflow of acid
lectrolyte will cause tray corrosion, ground paths, and loss of

ell capacity. Although distilled water is no longer specified by
ost battery manufacturers; good quality water, low in minerals

nd heavy metal ions such as iron, will help prolong battery
ife.

s
w
n
o

ig. 3. The relationship between MSE and number of epochs in the different trainin
ith 30 neurons and feed forward net, (c) train-cgb with 30 neurons and feed forward
eurons and Elman net, (f) train-gdx with 10 neurons and Elman net.
r Sources 172 (2007) 946–956

Water loss is one of the major causes of battery failure [4].
hen water in battery acid evaporates, lead plates are exposed

o air and can corrode because the irreversible lead oxide on
he negative plates is produced when exposed to air. Also the
ositive plates are sulfated with residual sulfuric acid which is
emained on the surface of them. This process is often reversible
nless deep sulfation is produced.

For the first time, we represent the modeling of water con-

umption in the lead-acid batteries to achieve the best and fast
ay of water loss determination in the manufacturing compa-
ies (the standard test of water loss takes a long time depending
n the standard type (21–62 days)). For example, in Iranian

g functions, (a) train-cgp with 30 neurons and feed forward net, (b) train-bfg
net, (d) train-lm with 30 neurons and feed forward net, (e) train-gdm with 10
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ational standard [20] and IEC [21] the following test proce-
ure and critical conditions are used for water consumption test,
espectively:

. Charging batteries for 21 days with a constant voltage of
14.4 V at 40 ◦C, and determination of weight difference. In
this procedure the ratio of the amount of water loss to the
capacity of batteries should be less than 6 g Ah−1 for anti-
mony batteries.

. Charging batteries for 500 h with a constant voltage of 14.4 V
at 40 ◦C, and measuring the weight (W1) and continuing the
charge condition for another 1000 h and getting the W2. In this
procedure the amount of water loss [(W2 − W1)/2] divided
by capacity of batteries should be less than 1 g Ah−1 for
antimony batteries.

ecause of the fact that in majority of international quality con-
rol standards and quality control centers for lead-acid industries,
ll water consumption tests for vehicle batteries are carried out
t a constant charge voltage and temperature, in this work, water
onsumption is discussed in different constant charge voltages
nd temperatures.

The water consumption quantity is attributed to grid design

available surface area), grid alloy, electrolyte level (upper than
lates or lower than them), paste composition, ambient tem-
erature and charge voltage. For this reason we limited our
ariables and used the same batteries in the case of grid design,

u
u

v

Fig. 4. The schematic of final model (a) preprocessin
r Sources 172 (2007) 946–956 951

rid alloy, level of electrolyte and all of the related param-
ters and only the temperature and voltage of charge were
hanged.

During the test, the major part of charge is consumed only in
lectrolysis, and other processes including corrosion, capacity
echarge due to self-discharge, and on the other side reactions
uring test time are trivial. For example, batteries used in the test
ave less than 1% self-discharge per day and therefore, 0.5 Ah
an be reduced from total capacity of a 50 Ah–12 V battery.

few minutes of charging can compensate for this amount of
elf-discharge.

To collect the data, all batteries were charged at different
onstant voltages (V) and temperatures for 10 days. Because of
his fact that in cold temperatures, water loss occurs only from
lectrolysis, 0 ◦C was selected to study the behavior of batter-
es in these climates. Because of time-consuming behavior of
xperiments, we used only eight temperatures for experiences
nd thus, we could use only one temperature in validation set.
herefore, for validation of the model, three networks with dif-

erent groups of dataset were trained. This classification is shown
n the Table 2. The results showed that in all networks, the model
as the same behavior and this could verify the strength of this
odel. It should be mentioned that the model was trained by
sing log (w) in the Feed forward network and real (w) was
sed in the Elman network.

We posited that while increasing the temperature and charge
oltages, the quantity of water loss increases and as it is seen

g input (b) postprocessing output (c) weights.
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Fig. 4. (

rom Fig. 2, the experimental data shows this proportional rela-
ionship and supports the idea.

Table 3 shows the comparison between different training
unctions and as it is shown the “train-lm” function had the
est performance and as a result with less MSE (Mean Square
rror) in both Feed forward and Elman networks but the pre-
iction error in the Elman network was more while using this
unction and due to this reason we used the “train-gdx” function
or Elman network. Table 4 shows a brief description of training
unctions listed in Table 3. Fig. 3 shows the relationship between

SE and number of epochs in different training functions in
etwork 1. As it is seen from this figure, the performance of

rain-lm function in the feed forward network (Fig. 3d) is lower
han other functions which mean that it has a lower mean square
rror. However, as it was mentioned before, we had a high pre-
iction error with this network and because of this, the Elman

w
t
s

inued ).

etwork was used with train-gdx function in the training pro-
ess. As it is seen from Fig. 3f, it has a low MSE. The prediction
rror was used as a tool for controlling the training process. The
odel with the lowest prediction error was used as final and

ptimum model. Table 5 shows the architectures and specifica-
ions of the optimized ANN (for three networks). The schematic
f network is shown in Fig. 4. After training process, it was used
or prediction of water consumption quantity in the batteries at
hree different temperatures in the prediction set as an internal
alidation. Fig. 5 shows variation of the predicted data versus
xperimental data in prediction set of network 1 at 0–140 h for
ifferent constant temperatures and voltages.
Variations of predicted data versus experimental data for net-
orks 2 and 3 in prediction set at 0–140 h for different constant

emperatures and voltages are shown in Figs. 6 and 7. As it is
een from these figures, the prediction data has a good compat-
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Fig. 5. Variation of predicted weights (water consumption quantity) vs. experimental weights (water consumption quantity) at 0–140 h for constant temperatures and
voltages of (a) 0 ◦C and 13.75 V, (b) 60 ◦C and 14.25 V, (c) 80 ◦C and 13 V, (d) 80 ◦C and 14.75 V for network 1 in prediction set.

Fig. 6. Variations of predicted weights (water consumption quantity) vs. experimental weights (water consumption quantity) for network 2 in prediction set at 0–140 h
for constant temperatures and voltages of (a) 40 ◦C and 14.25 V, (b) 70 ◦C and 13.25 V, (c) 70 ◦C and 15 V, (d) 90 ◦C and 14.5 V.
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ig. 7. Variations of predicted weights (water consumption quantity) vs. experim
or constant temperatures and voltages of (a) 30 ◦C and 15 V, (b) 60 ◦C and 14.2

bility with the corresponding experimental data. So, the model
an be used with low prediction error in predicting of water
onsumption.

Fig. 8 illustrates test samples that validate the model (in
hree networks) at 0–140 h for constant temperatures and volt-
ges of (a) 50 ◦C and 14.5 V, (b) 60 ◦C and 14.25 V, (c) 70 ◦C

nd 13.25 V. These samples represent data that have not taken
art in the training; hence, they measure the network ability
o replicate the correct response for any randomly drawn input.
ig. 9 shows the predicted time-water consumption behavior and

ig. 8. Variation of weights (water consumption quantity) vs. experimental
eights (water consumption quantity) for network 1, 2, and 3 at 0–140 h in
alidation data set, for constant temperatures and voltages of (a) 50 ◦C and
4.5 V, (b) 60 ◦C and 14.25 V, (c) 70 ◦C and 13.25 V.
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weights (water consumption quantity) for network 3 in prediction set at 0–140 h
c) 80 ◦C and 14.25 V, (d) 80 ◦C and 14.75 V.

xperimental data for network 3 at 70 ◦C and constant voltages
f (a) 13.25 V, (b) 14.25 V and (c) 15 V in validation set. Fig. 10
epicts the variation of predicted data versus experimental data
or networks 1, 2 and 3 at different charge voltages, tempera-
ures and times for ANN model in validation data set. As it is
een from Figs. 8–10 there are good agreements between results
f predicted and experimental data in the validation datasets
nd this can verify the ability of this model. This model can be
pplied to other types of batteries as another application of it.

Table 6 shows maximum prediction error in prediction and
alidation sets. As it is seen from this table, there is a good
greement between experimental data and predicted data. The
rediction error of 10% or lower is acceptable for ANN models.
lthough with increasing the number of layers and neurons,
e can have the least error but it increases training time
nd decreases the speed of computation. Because of this we
hose the minimum error that is acceptable in industrial appli-
ations.

able 6
ean prediction errors (%) of the proposed ANN model for prediction and

alidation sets

Network

1 2 3

rediction set 1.20 0.30 1.67
alidation set 0.99 0.03 0.76
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Fig. 9. Comparison of predicted time-water consumption behavior and experi-
mental data for network 3 at 70 ◦C and constant voltages of (a) 13.25, (b) 14.25
and (c) 15 V in validation set.

Fig. 10. Variation of predicted weights (water consumption quantity) vs. experi-
mental weights (water consumption quantity) for networks 1, 2 and 3 at different
charge voltages, different temperatures and times for ANN model in validation
data set.
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As mentioned before this network has two layers and the
ransfer function was tangent-sigmoid for the first layer and
inear for the second one.

This model is compatible with different type of batteries in the
ntimony–lead-acid battery category with different capacities.
o implement this model for different types of batteries, we
hould have three samples from the selected battery and record
he result of water loss quantity in a short time (30 min) in one
emperature and three voltages. When these data are imported
o the network it can measure the amount of errors and adjust
he model. Then, we can use the model for each temperatures or
oltages.

With application of this model, long time of water con-
umption test (21–60 days according to different standards) is
ecreased to less than 1 h and certainly it can reduce the cost
f test and save the time. While using this method, laboratory
perators can do more tests and as a result each factory can fol-
ow the quality of its product more appropriately. Moreover the
ost of energy is reduced in this model.

. Conclusions

A water consumption computation model based on the artifi-
ial neural network (ANN) has been proposed. While compared
o methods based on experimental data and standard calculation
f water consumption, this method, based on the ANN, gives
ighly accurate estimation of water consumption quantity.

Accuracy and the generalization of the neural model in the
ystem prediction are demonstrated by comparing test results
ith actual data.
The model can be used successfully for prediction of time-

ater consumption behavior at different constant temperatures
nd voltages. The final model was used in MATLAB 7 media for
aking a file (a program for water consumption prediction) for

nexpert operators in industries of lead-acid batteries in order to
redict water consumption quantity at any constant temperature
nd voltage.
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